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Abstract

It is common opinion that many creative exploit are trig-
gered by serendipity, fortuitous events leading to unin-
tended consequences but this interpretation might sim-
ply be due to a poor understanding of the dynamics of
creativity. Very little is known, in fact, about how inno-
vations emerge and sample the space of potential nov-
elties. This space is usually referred to as the adjacent
possible, a concept originally introduced in the study
of biological systems to indicate the set of possibilities
that are one step away from what actually exists. In
this paper we focus on the problem of portraying the
adjacent possible space, and of analysing its dynam-
ics, for a particular cultural system. We synthesised the
graph emerging from the Internet Movies Database and
looked at the static and dynamical properties of this net-
work. We dealt with the subtle mechanism of the adja-
cent possible by measuring the expansion and the cover-
age of this elusive space during the global evolution of
the system. We introduce the concept of adjacent possi-
bilities at the level of single node to elucidate its nature
by looking at the correlations with topological and user
annotation metrics. We find that the exploration of the
space of possibilities (potentially infinite by definition)
shows a saturation size. Furthermore, single node anal-
ysis unveiled the importance of the adjacent possible as
a useful probe for cultural impact.

The Invisible Horizon
from the Shoulders of Giants

In a 1676 letter of Sir Isaac Newton can be found one of
his most famous quotes: ”if I have seen further, it is by
standing on the shoulders of giants”. With these words
he meant to acknowledge and thank all the scholars that,
with their efforts, made his work possible. The quote it-
self, actually, stems from at least four centuries before and
was originally attributed to Bernard of Chartres. All cul-
tural evolution processes strongly depend on the ability to
stand on the shoulders of giants. Each new outcome of a
cultural system is influenced by prior outcomes, just like
in a biological system each offspring is the result of repli-
cations, recombinations and/or mutations of its ancestors
DNA. The dynamics of evolution and innovation in cul-
tural systems represents a very hot cross-disciplinary topic,
which attracted several efforts from the scientific commu-

nity in recent years (Mayer 1998; Elgammal and Saleh 2015;
Tria et al. 2014; Jordanous, Allington, and Dueck 2015). In
particular, the topic has been tackled form several angles: for
example, by trying to understand and quantify the unexpect-
edness of commercial products (Grace and Maher 2014),
by analysing the balance between originality and genera-
tivity in the creative cooperative production of online com-
munities (Hill and Monroy-Hernández 2012) or by study-
ing user linguistics behaviours and innovations on the web
(Danescu-Niculescu-Mizil et al. 2013). These efforts have
been made possible by the unprecedented availability of data
tracking influences in the cultural activity typical of the In-
formation Age we live in. Innovation phenomena do not
just depend on the shoulders one is standing on. Innova-
tors stand on the edge separating the previous knowledge
from what still remains to be discovered. There is a wide
horizon of innovations reachable from the verge of what
is already known and, after Kauffman (1996), we name it
as “adjacent possible”. By definition the adjacent possible
gets continuously reshaped at every step forward in the un-
known. We can describe cultural innovation processes like
explorations in the hypothetical network of cultural entities
linked by their influences (Wang, Song, and Barabási 2013;
Spitz and Horvát 2014; Mauch et al. 2015). Though the way
in which these influences are combined to produce novel
outcomes is currently under the attention of scientists, very
few attempts have been done, to the best of our knowledge,
to analyse the way in which cultural network are explored
so that the very notion of adjacent possible in cultural sys-
tems remains largely unexplored. Several question arise
around this fascinating concept. How creative solutions do
explore the adjacent possible frontiers? Do exploration pat-
terns have long time lasting influence in the cultural net-
work? Can this mechanism be improved to foster the in-
surgence of creative exploits? And, if so, how? In which
way the creative exploration path covered in the past does
influence future steps? Shedding some light on these ques-
tions could strongly improve our understanding of creativity
and innovations both at an individual and at a societal level.
This paper takes these lines of investigations by focusing
on the the cultural system behind the cinematographic pro-
duction. We adopted in particular a Web dataset of cine-
matographic production to reconstruct the network of influ-
ences among motion picture films. This network has been
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recently investigated (Wasserman, Zeng, and Amaral 2015;
Spitz and Horvát 2014) with the aim to identify the most
influential movies. Instead, here we focus on the notion
of adjacent possible, both at the individual and collective
level, with the aim of investigating its very definition and its
structure as well as it gets explored by its community and
reshaped over time. Though the adjacent possible remains
a very elusive concept, a first portrait of its dynamics will
emerge along with an interpretation of its meaning.

The Weaving of Influences
in the History of Cinema

The Internet Movie Database (abbreviated IMDb, available
at http://www.imdb.com) is an online database of informa-
tion related to films, television programs and video games,
including cast, production crew, fictional characters, biogra-
phies, plot summaries, trivia and reviews. The information
comes from various sources. The IMDb team actively gath-
ers information from studios and filmmakers though the the
bulk of information is submitted by people in the industry
and visitors. Sources of information include, though not
limited to, on-screen credits, press kits, official bios, auto-
biographies, and interviews. Each movie web-page features
metadata about awards, box office, releases date, plot key-
words, ratings and connection between movies (spoofs, ref-
erences, quotations, etc). In particular, the connections be-
tween pairs of movies are the crucial data we are interested
in. To use them as a proxy for the movies influence, we
downloaded the dataset of movies and connections, enriched
with metadata about awards, ratings, etc., and then applied
the following filtering procedure.

From the Raw Dataset to a Movie Influence
Network
The IMDb dataset contains several millions of entities,
many of which are not movies at all. The filtering proce-
dure explained in the following, partly reproduces the work
of (Wasserman, Zeng, and Amaral 2015). The platform con-
tains information about TV shows, game show, news, video-
games, music video and short movies and other formats. We
reduced our analysis to “normal” movies, labeled in this way
by the platform itself. Also, we considered movies with pub-
lication date in the period from 1909 to 2005. In this way
we avoided the recentism of latest years productions, i.e.,
the tendency to over-annotate recent movies with respect to
their historical importance. This over-annotation in connec-
tions would lead to a boosted high degree of some nodes that
could bias the structure of the network.

Regarding the connections themselves, we adopted three
of the eight types present in the dataset:

spoofs a fun reference to a title is made in a subsequent
production;

features extracts from a title appear in another movie; e.g.,
a movie shows characters attending a cinema screening
another movie, or the audio from a program is heard on a
TV or a flashback sequence;

Figure 1: Growth in time of the number of movies and the
number of inspiration links between them for the filtered
graph.

references a title is referenced or a homage is paid to it in
a subsequent movie; this includes recreations of movies
scenes and off-screen references (e.g., the background
music score)

The other five kinds of connections have been neglected
because they are used much less frequently (ca. 103 times
vs 105) and because they are mainly technical connections
(e.g., re-edit or alternate language version). From the result-
ing set of movies and connections we constructed a direct
graph (where the direction of links is chronological: influ-
ence moves from older movies to newer). Since time reso-
lution is, in the worst cases, 1 year, we adopted this value as
time resolution for every movie. We neglected all the inter-
actions between movies of the same year. These interactions
are usually unlikely in the dataset, and by doing so we get
a tree structure, needed for our analysis. The graph result-
ing from this filtering has then been reduced to the largest
weakly connected component. The final outcome is a graph,
that we name the inspiration graph, with 20860 movies and
55219 links. The growth in time (by year) of the number
of movies and of the number of connections is reported in
Fig. 1. The links we are considering represent only the most
explicit type of relation that can exists between two movies,
without wanted to be exhaustive. Surely, influences are ab-
solutely not limited to the ones reported in our dataset. The
assumption we make is that our sample only captures the
strongest relations among movies, somehow crucial for the
development of a specific movie. In other words, we are
assuming that a certain movie could not exist as it is with-
out all the previously created ones with which it shares an
inspiration link.

Properties of the inspiration graph
Before proceeding with the operative definition and the anal-
ysis of the adjacent possible, we report some basic analy-
sis about the inspiration graph. Since we shall focus on the
whole cinematographic system and its productions, it seems
natural to consider the production itself, intended as the
number of movies produced, as the intrinsic time of the dy-
namics. In this sense, the temporal unit of our system will be
the creation of a movie, instead of the physical time. Fig. 2
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Figure 2: Growth of the number of inspiration links in the
intrinsic time of the cultural system (the number of movies).
A growing power law ∼ x2 is reported as a guide to the eye.

Figure 3: The histograms of the in- and out-degrees for the
inspiration graph. The continuous line is the best fit with a
power-law function.

reports again the growth of the network in this intrinsic time.
The growth of the connections shows a steady power-law
like growth (with exponent around 2) except for a few fluc-
tuations, likely to represent the influence of historical, so-
cial and economical events (like World War II). An insight
about the structure of the network is provided by the distri-
bution of the in-degree (the number of influences received
by a title) and of the out-degree (the number of influences
coming from a title). Fig. 3 shows that unsurprisingly the
distributions of these metrics can be described by power-law
distributions. This kind of degree distribution is the signa-
ture of scale-free networks, which appear often in the anal-
ysis of human behaviour, in annotation process and in other
well studied influences network (Spitz and Horvát 2014;
Newman 2005; Wang, Song, and Barabási 2013). The dis-
tribution proved to be stable also against time resampling
(e.g., by taking only a fraction of the story of the system),
which means it is a stable feature consequent of the dy-
namic process we are analysing. The exponent of the power
law has been estimated in ∼ −2.3, with no significant dif-
ference between out- and in-degree distributions. We com-
plete this preliminary analysis by looking at the distribution
of time separations between related movies. The histogram
of these distances is presented in Fig. 4, together with two

Figure 4: Histogram of the distances in years between re-
lated movies. As a reference, we reported the histograms of
the distances of two null models: a random reshuffling of all
edges and a rewiring preserving the degree distribution.

null models (a rewiring preserving degree distribution and a
complete reshuffling of edges) (Albert and Barabási 2002;
Wasserman, Zeng, and Amaral 2015). The comparison fea-
tures a strong bias towards short temporal distances in real
connections, which proved to be stable over time. This
behaviour of the system highlights the natural tendency of
movies to be influenced by those sharing the same cultural
moment, like semantically correlated elements clustering in
time (Tria et al. 2014).

The Adjacent Possible:
Just One Step Away, in the Future

In this section we start by giving an operational definition of
adjacent possible. Let us consider a generic graph of cultural
productions linked by their influences with a dynamical pro-
cess on it. At each time step, the graph can be divided in
two parts: the known (or the actual) K(t), i.e., the subset of
nodes already explored, and the unknown (or the possible)
U(t), i.e., the subset of nodes still unseen. The exploration
of this graph can only take place through influence links. We
can thus define, at each time step, a subset of the unknown
set containing all those nodes with all their influencers nodes
belonging to the known set. This subset is defined as the
“adjacent possible” at time t, AP(t). Alternatively it can
be defined as the set of unknown nodes that can be reached
with the next step of exploration. An exemplification of the
process is reported in Fig. 5. Since, by definition, the adja-
cent possible lies in the unknown part of the graph, we have
no immediate access to it. Also, there is no guarantee that
the future evolution of the system will reveal all the nodes
belonging to the adjacent possible at any given moment. For
sake of clarity let’s consider an example. Suppose we are in
1950 and we look at the network of the whole production so
far. In 1950 the adjacent possible of the nodes from 1930
(AP(1930)) will be represented by a given number of nodes
(for instance the orange nodes in Fig. 5). If we now fast for-
ward in time and land in the year 1980, we observe that the
size of AP(1930) will be larger, i.e., the number of orange
nodes will have increased. This is a key point. The size of
the observed adjacent possible depends on the point in time
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Figure 5: An exemplification of the exploration of the adja-
cent possible. The known nodes are in green (actual). Un-
known and unaccessible nodes, i.e. with undiscovered inspi-
rations, are in white (far possible). All the productions still
unknown but with all the dependencies already discovered
are in orange and represent the adjacent possible. Nodes
with continuous contour have a non-zero in-degree, thus we
know their main inspirations and their belonging to some
specific adjacent possible, in its strict definition (Inf ). Nodes
with dashed contour do not have a in-degree and their inspi-
ration are not known (they could be completely original or
those inspirations could be simply not reported in the dataset
or come from external media like books, news, etc). Thus,
these nodes can be considered always in the loose definition
of the adjacent possible (Sup), until they happen to be dis-
covered. On the left, the graph before a production step. The
new production is chosen among those in the adjacent pos-
sible. After the step, on the right, a new node is now known,
and it has unlocked new nodes that are now part of the new
adjacent possible.

from which we retrace the whole history. Presumably in 20
years time there will be new movies produced that will be
adjacent adjacent to those of 1930. This means that, based
on what we know and what we can measure, the adjacent
possible could be an infinite set and it is only the finiteness
of our sample that makes it finite. The best we can do is
to measure the subset of adjacent possible observed at any
given time. In practice what we can observe depends on two
times: the time t at which we define the adjacent possible
and the time t′ (t′ > t) from which we retrace the history.
We can thus define the observed adjacent possible as:

Γ(t′, t) = AP(t) ∩K(t′) (1)

where K(t′) is the set of known nodes at time t′. Though
this set does not allow for a direct measure of AP(t) it is
very useful to provide us with valuable insights on how the
exploration of AP(t) takes place. Let us now apply this
definition to our system. In our dataset we do not have the
information about each intrinsic time step (i.e., each time a
new movie comes out) since our time resolution is one year.

Figure 6: Measure of the superior (Γsup(2005, t), in green)
and inferior (Γinf(2005, t), in blue) estimates for the ob-
served adjacent possible of the inspiration network vs. the
intrinsic time t of the system, i.e., the number of movies
produced.

Still, we can define the state of knowledge of the network
once a year, and consequently, we can estimate Γ(t′, t).

Before proceeding we should consider another element.
In order for a node to be in the adjacent possible of other
nodes, it must receive at least one influence, which means
that the in-degree must be larger than 0. However, since the
in-degree is distributed according to a power law, kin = 0 is
not only possible but is the most likely value. Actually, we
cannot consider all these nodes as not having any influences
at all. It is more likely that those influences have not been
tracked yet or they come from sources external to our net-
work (e.g., a book, a song, etc.). In order to overcome this
problem, we define two metrics for the adjacent possible,
depending on how we choose to treat nodes with kin = 0.
We can consider them as potentially uninfluenced, and then
always in the adjacent possible until they happen to become
part of the K set or we can simply neglect them. In one case,
we are overestimating the size of the observed adjacent pos-
sible we can access, in the other case we are underestimating
it. These ideas are explained in Fig. 5. We named these two
metrics Γsup and Γinf and we measured both for each yearly
state of knowledge of the network. Results are shown in
Fig. 6. The measure gives us a general information about
the typical size of Γ, which lies between 103 and 104 for the
whole evolution. The measure in the final part looses relia-
bility due to size effects, but still we can suppose that the size
of Γ does not diverge with the size of the system. Let us now
study directly the evolution of the coverage of the observed
adjacent possible at a given time t. With our data, the best
estimation that can be given of how the adjacent possible is
going to be known during the exploration is to measure the
evolution in time t of Γ(2005, t′) ∩ K(t), i.e., the number
of movies of the observed adjacent possible that are actually
realized at each time t. In other words, with our data the
best estimation for the adjacent possible of a given year t′
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Figure 7: The evolution of the coverage of the observed ad-
jacent possible Γsup (upper figure) and Γinf (lower figure).
Different curves correspond to different values of t′.

is the observed adjacent possible calculated using the whole
timespan, i.e. updated to 2005. This set, according to Eq. 1,
can be indicated with Γ(2005, t′). What we want to measure
is how many movies of this set have been actualized in time t
(where obviously t > t′). The results, for both metrics (Γinf

and Γsup) of the observed adjacent possible, are reported in
Fig. 7. Both measures, in particular Γinf , seem to show a ten-
dency to saturation if a sufficient elapse of time has passed.
To quantitatively account for this effect we fitted both types
of curves with a function of the kind y = a(1 − e−x/b),
describing and exponential asymptotic relaxation towards a
constant value defined by a. Fit results are not reported for
the sake of brevity. Instead, we show in Fig. 8 how all the
curves in Fig. 7 collapse when shifted and rescaled accord-
ing to the transformations x → x/b and y → y/a. We
observe a convincing collapse for Γsup curves while Γinf

curves feature some fluctuations around the master curve.
To investigate such fluctuations, we fitted the curves of Γsup

and Γinf for every time t′. Figure 9 shows the obtained fit-

Figure 8: Collapse of the observed adjacent possible cover-
age curves of Fig. 7 when shifted and rescaled according the
exponential fit parameters. Γsup curves are reported in the
upper panel, while Γinf in the lower.

ting parameters a and b as a function of the intrinsic time
(i.e., number of movies). It can be seen that for Γinf the
largest fluctuations correspond to curves related to the first
years of the dynamics. These measures are important be-
cause they tell us that even if the adjacent possible could
be infinite, the observed adjacent possible of a given state
of the inspirations network is covered in time in a way that
suggests its boundedness. Indeed, and it was not obvious
a priori, its discovered size seems to converge. Moreover,
we have a quantitative account of time scales to reliably ob-
serve the convergence of the observed adjacent possible, or
at least to estimate its size. The upper part of Fig. 9 shows
the evolution with the growth of the system of the b parame-
ter which is the time-scale of the exponential function fitting
the coverage curves of Fig. 7. The parameter b can also be
interpreted as the order of magnitude of the intrinsic time
one should wait to have a reliable observation. Considering
Γsup we see that the behaviour of both a and b as functions
of the intrinsic time changes around a time ≈ 104. Hence,
considering this change as an effect of the finite size of the
system, we are able to estimate correctly the size of Γsup for
at least half of our dataset (i.e., every movie produced be-
fore t ≈ 104). The evolution of b relative to Γinf tells us
a different story. There is a clear peak (apparently limited
only by the size of the dataset) representing a divergence
of the timescale. Accordingly, since to accurately measure
size we need data spanning more than a timescale, we can
then conclude that size measures in the time frame of the di-
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Figure 9: The evolution of exponential fitting parameters a
and b. Each dot is a year for which we calculated the ob-
served adjacent possible, measured the coverage curve (like
in Fig. 7) and estimated the exponential fit parameters a and
b. The curves represent the evolution of the coverage func-
tions of the observed adjacent possible. In the upper figure,
the sequence of values for the parameter b, representing the
scale of time, both for Γsup (green) and for Γinf (blue); in the
lower panel, the analogous for the parameter a, measured in
number of movies.

vergence are less reliable. Comparing this with Fig. 1 and
Fig. 2 we notice that such period is characterised by a strong
change in the dynamics, which could have led the system to
this instability. Looking at Fig. 9, we can see that this ef-
fect disappears for t ∼ 103 (approximately half of the story
covered by the dataset), where the curve lies smoothly in the
same range of the bsup curve. Looking instead at the size
parameter a we observe, for Γsup, a decreasing curve with
some discontinuity in the slope around 104. The asymp-
totic size of the observed adjacent possible seem not to be
divergent with the size of the system and, thus, measurable
(roughly estimate around ∼ 7 · 103). For the Γinf scale pa-
rameter we observe a different behaviour. A rapid growth
until the peak of the unstable zone (∼ 5 · 103) followed by
a more or less stable plateau slightly under ∼ 6 · 103. In the
last part of the evolution, the two parameters estimating the
asymptotic size of the observed adjacent possible basically
collapse, suggesting an high reliability of the measure.

Possible Meanings for the Adjacent Possible
The procedures implemented so far have, amongst the other
purposes, the aim to prove the measurability of the observed

Figure 10: The matrix of the Pearson’s coefficient between
the adopted metrics.

adjacent possible and to give a quantitative insight about it.
A qualitative understanding is also needed. To look more
in detail at the possible meanings of the entity we defined
at the global systemic scale, we can give also a microscopic
definition of the adjacent possible of single nodes. In partic-
ular, if we consider Fig. 5, we can notice how the passage
of a node from the adjacent possible to the known “unlocks”
other nodes that, after the step, have become accessible and
thus now belong to the adjacent possible. So, we can de-
fine for each node a metric depending on the unlocked ad-
jacent possible (UAP in the following, referring to the ob-
served adjacent possible). This metric, normalized in differ-
ent ways, has to be compared with others, as described in
the following. The comparison has been performed by cal-
culating the Pearson’s coefficient. The matrix of the results
is reported in Fig. 10. The metrics evaluated are reported in
the following, and are always relative to a generic node n.
UAP the number of nodes made available by the production

of n; the number of nodes which were missing only n as
reference to be in the adjacent possible.

UAP / APsup the UAP metric normalised by the superior
limit to the size of the adjacent possible observed for the
year of n. AP sup stands for Γsup(2005, t(n)).

UAP / APinf the UAP metric normalised by the superior
limit to the size of the adjacent possible observed for the
year of n. AP inf stands for Γinf(2005, t(n)).

Erased the number of nodes that would be unaccessible if
the node n would never be discovered. This number has
been estimated with the following algorithm.

1. we remove the node n;
2. we considered each node m amongst those influenced

by n. We will assume that if n would not exist each
node m would risk not to be discovered, depending on
the importance of the influence between n and the spe-
cific m;
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3. to estimate this importance, we consider all influences
received by the specific m. We weight each influence
received by m as the inverse of the in-degree of the
node m. If the weight of the influence between n and
m crosses a given threshold (30%), the influenced node
m is removed and all its descendants will be considered
for removal; i.e. if a node m has only two influences
including n then the importance of the influence of n
can be roughly estimated to be around ∼ 50%; thus,
since this value exceedes the threshold, m will be re-
moved and the movies influenced by m will have to be
checked;

4. all nodes in the list of those to be considered for
removal are analysed chronologically with the same
rules, removing them if the sum of the weights of the
deleted influences passes the threshold and adding their
influenced nodes to the list, in case of removal.

This metric is an adapted version of the vitality metrics
from (Brandes and Erlebach 2005).

Closeness Closeness centrality (Freeman 1978) is the recip-
rocal of the sum of the shortest path distances from n to all
N−1 other nodes. Since the sum of distances depends on
the number of nodes in the graph, closeness is normalised
by the sum of minimum possible distances N − 1.

C(n) =
N − 1

Σmd(m,n)
(2)

Betweenness The betweenness centrality (Brandes 2008;
Brandes and Erlebach 2005) of a node n is the sum of
the fraction of all-pairs shortest paths that pass through n:

cB(n) =
∑

m,m′∈V

σ(m,m′|n)
σ(m,m′)

(3)

where V is the set of nodes, σ(m,m′) is the number of
shortest (m,m′)-paths, and σ(m,m′|v) is the number of
those paths passing through n �= m,m′.

Awards The number of awards and nominations obtained
by n as reported on the IMDb platform.

〈Ratings〉 The average vote (from 1 to 10) for the movie n
given by IMDb platform registered users.

Num. Ratings The number of votes for the movie n given
by IMDb platform registered users.

Int. Ratings The number of reviews for the movie n sub-
mitted by IMDb platform registered users.

Ext. Ratings The number of links to external website re-
views (usually from major print or online media organisa-
tions). Links are submitted on the IMDb platform by film
reviewer or editor or a movie site team.

Let us now discuss the correlation matrix reported in
Fig. 10. Our main matrix, UAP strongly correlates with
UAP/APsup but very poorly with UAP/APinf . The latter
shows a weak degree of correlation with the Erased metric.
This metric has been introduced to prove that UAP , despite
its very local definition, can have long temporal range con-
sequences. In fact, all the first three metrics show a strong

correlation with it, meaning that the influence of a node
with high UAP metric can reach high temporal distances,
more or less directly. Closeness and betweenness centrality
measures correlate fairly with the UAP and UAP/APsup.
This is an insight of their value in the identification of nodes
important from a topological point of view, connecting dif-
ferent communities or standing in the core of the network.
All the other metric correlations proves the cultural value
of nodes with high UAP and of UAP/APsup metric. It is
worth to note the weakness of the correlation with 〈Ratings〉.
This seems to suggest that the cultural value we are observ-
ing deals more with the interest gathered that with the appre-
ciation (according to interest and appreciation information
given by IMDb users).

Conclusions and perspective:
the adjacent possible of this paper

In this paper we analysed the adjacent possible, the space
in which creative efforts can move a step over the frontiers
of what is known. We synthesised a network of influences
between the entities of a cultural system. In particular we
dealt with the cinematographic production system by lever-
aging the data extracted from the IMDb platform. With a
suitable filtering procedure we sketched a graph of the most
important influences and studied its structure and dynami-
cal properties. In particular, we observed that despite the
fact that the system showed an unstable growth rate, it re-
sulted in a scale-free network of influences among movies.
Moreover, these influences were found to be preferentially
attached over short time distances (as inferred by compar-
ing with null models). We then defined the observable pro-
jection of the adjacent possible according to the temporal
resolution of one year. For each year, the observed adja-
cent possible was considered as the set of movies not yet
produced whose inspirations lay all in the past. We had to
define two kinds of observed adjacent possible in order to
take into account nodes without annotated influences, the
upper and lower bounds of the adjacent possible. We mea-
sured the adjacent possible for every year, within the dataset
limits. Then we tracked how the adjacent possible of each
year was covered by what was already known at previous
times. This evolution led us to fit the coverage curves, and
to estimate the typical time scale and the asymptotic limit
for the size of the observed adjacent possible. Both num-
bers are, in the majority of cases, substantially smaller than
the size and characteristic times of the whole network. This
seems to suggest the existence of a saturation in the size of
the observed adjacent possible at any given time that will
be eventually explored. In other words, this result indicates
that, even though the adjacent possible of a given state of the
network is potentially unbounded, only a finite part of it is
likely to be visited, and the size of this part can be estimated
in a finite amount of time (e.g., with datasets of other cul-
tural systems with a longer timespan or through computer
simulations). This result is somehow surprising given our
absolute, though natural, ignorance about the structure of the
adjacent possible. Again, it is worth remarking that our con-
clusions apply to those parts of the network space one can

126

 

121Proceedings of the Seventh International Conference on Computational Creativity, June 2016



observe, i.e., to the way in which that space was explored
in history. In the last part of the paper we re-elaborated the
definition of a suitable metrics for nodes, to be compared
with other metrics, already known in literature or used by
the IMDb dataset itself, related to the influence or the popu-
larity of a movie. The metric we propose consists in the size
of the unlocked adjacent possible (UAP ). After a new node
n is produced, the UAP is the number of nodes that were
unreachable before and now are made available for produc-
tion as a result of all known influences, including that of n
itself. This metric, despite its local definition, was shown
to be strongly correlated with a metric calculated on large
temporal distances. Also, comparisons with standard topo-
logical metrics showed that high UAP values correspond
to crucial nodes in the structure of the network. Finally,
we also confirmed the cultural importance of the UAP as
it correlates with the IMDb metrics, which are interesting
for users. All these correlations confirmed the strategical
importance of the adjacent possible concept even at the sin-
gle node level. Thus, the study and understanding of its
dynamic could be strategically fundamental to get a deeper
comprehension of cultural system dynamics and evolution.
The obvious problem for this is the time limit of the avail-
able statistics. This could be easily overcome by creating a
model faithful enough to reproduce not only the statistical
markers of the influence network but also the pattern of ex-
ploration of the adjacent possible. Given the peculiar char-
acteristics of the network of influence this seems not to be
an easy task, because the right balance between short time
biases and preferential attachment (leading to a scale-free
distribution) could be conflicting. Even when correctly bal-
anced, there is no guarantee that the model would reproduce
the correct adjacent possible exploration pattern. However,
in case of success, such a model could confirm (or discard)
our findings and could provide several answers about how
creativity works and, maybe, can be improved at an individ-
ual and at a societal level. In fact, our metrics give us a new
instrument to evaluate the value and the impact of creative
productions. Also, this work can be considered as a first step
toward a possible optimisation strategy for the exploration
of the unknown. In fact, a deeper understanding of the ad-
jacent possible exploration patterns could help to recreate
opportune condition for a faster insurgence and spreading
of creative solutions. We could understand if it is possible
to efficiently drive innovation toward a given direction, and
how, and this could completely transform, for example, our
scientific research funding policies and our artistic or tech-
nologic evolution cycles. It is likely that a good theory of
the adjacent possible, capable of such wonders, lies still far
from our actual adjacent possible, but we hope our work
could move the boundaries a bit toward that direction.

Acknowledgments
We acknowledge support from the KREYON project funded
by the Templeton Foundation under contract n. 51663.
VDPS acknowledges the EU FP7 Grant 611272 (project
GROWTHCOM) and the CNR PNR Project “CRISIS Lab”
for financial support.

References
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics
of complex networks. Reviews of modern physics 74(1):47.
Brandes, U., and Erlebach, T. 2005. Network analysis:
methodological foundations, volume 3418. Springer Sci-
ence & Business Media.
Brandes, U. 2008. On variants of shortest-path betweenness
centrality and their generic computation. Social Networks
30(2):136–145.
Danescu-Niculescu-Mizil, C.; West, R.; Jurafsky, D.;
Leskovec, J.; and Potts, C. 2013. No country for old mem-
bers: User lifecycle and linguistic change in online commu-
nities. WWW’13.
Elgammal, A., and Saleh, B. 2015. Quantifying creativity
in art networks. arXiv preprint arXiv:1506.00711.
Freeman, L. C. 1978. Centrality in social networks concep-
tual clarification. Social networks 1(3):215–239.
Grace, K., and Maher, M. L. 2014. What to expect when
you’re expecting: the role of unexpectedness in computa-
tionally evaluating creativity. In Proceedings of the 4th In-
ternational Conference on Computational Creativity, to ap-
pear.
Hill, B. M., and Monroy-Hernández, A. 2012. The remixing
dilemma: The trade-off between generativity and originality.
American Behavioral Scientist 57(5).
Jordanous, A.; Allington, D.; and Dueck, B. 2015. Measur-
ing cultural value using social network analysis: a case study
on valuing electronic musicians. In Proceedings of the Sixth
International Conference on Computational Creativity June,
110.
Kauffman, S. A. 1996. Investigations on the character of
autonomous agents and the worlds they mutually create. In
Investigations. Santa Fe Institute.
Mauch, M.; MacCallum, R. M.; Levy, M.; and Leroi, A. M.
2015. The evolution of popular music: Usa 1960–2010.
Royal Society open science 2(5):150081.
Mayer, R. E. 1998. Fifty years of creativity research. In
Sternberg, R. J., ed., Handbook of Creativity. Cambridge:
Cambridge University Press. 449–460.
Newman, M. E. 2005. Power laws, pareto distributions and
zipf’s law. Contemporary physics 46(5):323–351.
Spitz, A., and Horvát, E.-Á. 2014. Measuring long-term
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