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Abstract

Conceptual blending is a powerful tool for computational cre-
ativity where, for example, the properties of two harmonic
spaces may be combined in a consistent manner to produce
a novel harmonic space. However, deciding about the impor-
tance of property features in the input spaces and evaluating
the results of conceptual blending is a nontrivial task. In the
specific case of musical harmony, defining the salient features
of chord transitions and evaluating invented harmonic spaces
requires deep musicological background knowledge. In this
paper, we propose a creative tool that helps musicologists to
evaluate and to enhance harmonic innovation. This tool al-
lows a music expert to specify arguments over given transi-
tion properties. These arguments are then considered by the
system when defining combinations of features in an idiom-
blending process. A music expert can assess whether the new
harmonic idiom makes musicological sense and re-adjust the
arguments (selection of features) to explore alternative blends
that can potentially produce better harmonic spaces. We con-
clude with a discussion of future work that would further au-
tomate the harmonisation process.

Introduction
The invention of new harmonic spaces in this paper is con-
ceived as a computational creative process according to
which a new harmonic idiom is created by means of blend-
ing the ‘atoms’ of harmony, i.e., transitions between chords.
The blended transitions are created by combining the fea-
tures characterising pairs of transitions belonging to two id-
ioms (expressed as sets of potentially learned transitions) ac-
cording to an amalgam-based algorithm (Confalonieri et al.,
2015a; Eppe et al., 2015b) that implements Fauconnier and
Turner (2002)’s theory of conceptual blending. The transi-
tions are then used in an extended harmonic space that ac-
commodates the two initial harmonic spaces, linked with the
new blended transitions.

When modeling creative processes computationally, one
of the key questions is how good are the created artefacts.
The approach to evaluation that has been applied most fre-
quently within computational creativity requires a human to
evaluate attributes of the created work or the system’s op-
eration. Basic measures consider the typicality of a gener-
ated artefact within a particular genre, or the quality of the
generated work according to the users’ aesthetic judgement
(Ritchie, 2007).

In music blending, the evaluation of artefacts is not a triv-
ial matter. This is due not only to the time evolving nature of
the final output, but also to the lack of clearly defined crite-
ria for their assessment. In the particular case of transition1

blending, which is how harmonic blending is approached
in this paper, the evaluation of the blends is of key impor-
tance, in order to produce musically meaningful extended
harmonic spaces. To evaluate the set of blended transitions
and the corresponding generated extended harmonic space,
several musical features need to be taken into account ac-
cording to indications by musicologists. The importance of
each particular feature, however, is not known in advance
and musicologists need to make adjustments by experiment-
ing with a large set of test cases.

To ease this task, in this paper, we propose a creative
tool (Figure 1) that assists a musicologist with the evalua-
tion of harmonic blends. The system allows a musicologist
to specify arguments—abstracting the properties of chords
and transitions—and to use them for an iterative evaluation
of the blended outcome, based on the transitions that the sys-
tem proposes in order to connect two (potentially remote)
harmonic spaces.

Using arguments to make and explain decisions has been
proposed and explored in Artificial Intelligence (Bench-
Capon and Dunne, 2007), where an argument is a reason
for believing a statement, choosing an option, or doing an
action. In most existing works on argumentation, an argu-
ment is either considered as an abstract entity whose origin
and structure are not defined (Dung, 1995), or it is a log-
ical proof for a statement where the proof is built from a
knowledge base (Amgoud and Prade, 2009). The use of ar-
gumentation in concept invention is, on the other hand, less
frequent. Confalonieri et al. (2015b) use Lakatosian’s rea-
soning to model dialogues in which users engage to discuss
the intended meaning of blended concept.

In our approach, arguments encapsulate desirable proper-
ties that the user would like to have in the resulting transition
blends. Arguments are specified by the user by answering
specific questions over the features of the idioms selected
as input for the transition blending process. Providing some

1For the rest of the paper, the term transition will be referring
to a pair of chords where one follows the other. For example, G7
→ C is a transition describing the perfect cadences in tonal music.
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Figure 1: A schematic diagram of the system’s workflow.

higher level arguments as inputs to the system is equivalent
to allowing a musical expert to interact with it in a language
he/she understands. This offers the user a flexible way to
adjust the harmonic blending properties according to dif-
ferent input scenarios in order to improve the creativity of
the system. Extended experimentation with the system—by
making use of the available arguments—can enable music
experts to provide valuable feedback regarding the function-
ality of transition features, thus directly intervening in the
blending process by answering simple questions. In a fu-
ture scenario, the assessment of the system will be based
on merely musicological criteria that should be more clearly
defined.

The paper is organised as follow. In the next section, we
describe the harmonic blending creative process embedded
in a creative assistant tool we implemented. Next, we de-
scribe the methodology of transition blending and extending
harmonic spaces. We show how user arguments are used
to evaluate transition blends based on two criteria resem-
bling two of the optimality principles of conceptual blend-
ing. Then, we present a process-based system evaluation
that focuses on the creative acts of programmers (Colton et
al., 2014). This evaluation is helpful in guiding further de-
velopments of the system. These are discussed in a conclud-
ing section.

System overview and test cases
Figure 1 illustrates a diagram of the presented system. The
user (music expert) interacts with the system through the
Graphical User Interface (GUI), where she/he selects two
initial idioms (harmonic spaces expressed as sets of permit-
ted chord transitions) in γ and defines the important features
used in conceptual blending by answering specific questions
(argumentation) in β. The selected initial idioms are de-
scribed as sets of chord transitions, while the provided an-
swers to questions are mapped to enabling/disabling fea-
tures of transitions (see Section ‘Chord transitions descrip-
tion and blending’) that define the outcome of transition

blending (see Section ‘Evaluation of transition blending via
arguments’).

Afterwards, pairs of transition in the two initial harmonic
spaces are given as inputs to the transition blending sys-
tem in ε where new transitions are invented through con-
ceptual blending.2 These transitions are then integrated into
an extended musical idiom that includes the initial idioms
selected by the user. While the role of the new transitions
is to provide musically meaningful connections between the
initial harmonic spaces. The created extended idiom is dis-
played to the user in the GUI in terms of a transition matrix
(see Section ‘From transition blends to transition matrices’).
By observing the matrix, the music expert evaluates (ι) the
results produced by the current blending setup, i.e., the given
questions to the argumentation module (β), and re-adjusts
her/his answers in β accordingly.

Several scenarios for initial idiom combinations are avail-
able to the user. The system includes several harmonic
blending test cases according to which the user can blend
simple ‘artificial’ harmonic spaces as well as harmonic
spaces trained from data in different tonalities. The arti-
ficial harmonic spaces are manually constructed to include
simple transitions that can typically be found in tonal mu-
sic in order to allow clear interpretations of the results, e.g.,
a C major space included the chords C, F and G7. Among
the trained idioms that have been examined, there are sets of
Bach chorales in major and minor mode, and sets of modal
chorales in several modes.

The test cases, in which harmonic spaces in different
tonalities are blended, resemble the musical task of find-
ing transition paths for tonality modulations (changing the
tonality of a given harmonic space). This task allowed mu-
sic experts to identify arguments for defining the features
of transition blending that connect potentially remote har-
monic spaces (e.g., C major with F� major) in a manner that
is explainable in music theory in terms of tonality modu-
lations. Through the processes offered by the system, the
music experts were able to come to conclusions about what
transition features are important for constructing meaning-
ful connections between different combinations of pairs of
initial harmonic spaces.

Methodological aspects of transition blending
and extending harmonic spaces

The cognitive theory of conceptual blending by Faucon-
nier and Turner (2002) has been extensively used in lin-
guistics, music composition (Zbikowski, 2002), music cog-
nition (Antovic, 2009, 2011) and other domains mainly as
an analytical tool, which is useful for explaining the cogni-
tive process that humans undergo when engaged in creative
acts. According to this theory, human creativity is modeled

2For instance, if the two initial harmonic spaces are a tonal C
minor (I1) and a modal C phrygian space (I2), then a pair of tran-
sitions for blending could be G7 → Cm (from I1) and B�m →
Cm (from I2). A possible resulting transition from blending these
input transitions is the tritone substitution cadence, C�7 → Cm,
as computed in Eppe et al. (2015b) and Zacharakis, Kaliakatsos-
Papakostas, and Cambouropoulos (2015).
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Figure 2: Conceptual blending based on amalgam. The
generic space is computed (1) and the input spaces are suc-
cessively generalised (2), while new blends are constantly
created (3). Some blends might be inconsistent or purely
evaluated according to blending optimality principles or do-
main specific criteria.

as a process by which a new concept is constructed by tak-
ing the commonalities among two input spaces into account,
to form a so-called generic space, and by projecting their
non-common structure in a selective way to a novel blended
space, called a blend.

In computational creativity, conceptual blending has been
modeled by Goguen (2006) as a generative mechanism, ac-
cording to which input spaces are modeled as algebraic
specifications and a blend is computed as a categorical col-
imit. A computational framework that extends Goguen’s ap-
proach has been developed in the context of the COncept
INVENtion Theory3 (COINVENT) project (Schorlemmer et
al., 2014) based on the notion of amalgams (Ontañón and
Plaza, 2010). According to this framework, input spaces are
described as sets of features, properties and relations, and an
amalgam-based workflow finds the blends (Confalonieri et
al., 2015a; Eppe et al., 2015b). The amalgam-based work-
flow generalises input concepts until a generic space is found
and ‘combines’ generalised versions of the input spaces to
create blends that are consistent or satisfy certain properties
that relate to the knowledge domain (Figure 2).4

Amalgam-based conceptual blending has been applied
to invent chord cadences (Eppe et al., 2015a; Zacharakis,
Kaliakatsos-Papakostas, and Cambouropoulos, 2015). In
this setting, cadences are considered as special cases of
chord transitions—pairs of chords, where the first chord is
followed by the second one—that are described by means
of features such as the roots or types of the involved chords,
or intervals between voice motions, among others. When
blending two transitions, the amalgam-based algorithm first
finds a generic space between them (point 1 in Figure 2).
For instance, in the case of blending the perfect with the

3http://www.coinvent-project.eu
4In the process of blending through amalgams, the notions of

‘amalgam’ and ‘blend’ are the same. Therefore, in the following
paragraphs they are used interchangeably.

Figure 3: Example of blending cadences, which are special
case of transitions, where blending the perfect and the Phry-
gian produce the tritone substitution cadence blend.

Phrygian cadences (Figure 3)—described by the transitions
I1: G7 → C and I2: B�m → C5 respectively—their generic
space consists of any transition that has a second chord with
the root note C, since this is the root note of both inputs’
second chords (C and C5).

After a generic space is found, the amalgam-based pro-
cess computes the amalgam of two input spaces by unifying
their content. If the resulting amalgam is inconsistent, then
it iteratively generalises the properties of the inputs (point
2 in Figure 2), until the resulting unification is consistent
(point 3 in Figure 2). For instance, trying to directly unify
the transitions I1: G7 → C and I2: B�m → C5 would yield an
inconsistent amalgam, since a transition cannot both include
and not include a leading note to the second chord’s tonic
(which is a property of I1 and the I2 respectively). There-
fore, the amalgam-based process generalises the clashing
property in one of the inputs (e.g., the property describing
the absence of leading note would be left empty in I2) and
tries to unify the generalised versions of the inputs again.
After a number of generalisation steps are applied (point 2
in Figure 2), the resulting blend is consistent (point 3 in Fig-
ure 2). However, it may be the case that the blend is not
complete, in the sense that this process may have generated
an over-generalised term.

After several blends have been computed, an automated
evaluation process ranks them according to some optimal-
ity principles (Fauconnier and Turner, 2002, Chapter 16).
These principles are a necessary aspect of conceptual blend-
ing since they allow to filter interesting blends from the (po-
tentially too) many possible ones.5 A complete description
of optimality principles is out of the scope of this paper and
the reader is referred to Goguen and Harrell (2010) for appli-
cations of such principles in the Alloy algorithm. We give,
however, two extreme examples of ‘bad blends’ for clari-
fying the importance of using optimality principles in con-
ceptual blending. Example 1: Each of the input spaces is a
trivial form of a (bad) blend, since no information from the
other input spaces is considered. Example 2: A blend that
includes all properties of the generic space, but no other in-
formation of the inputs spaces is a bad blend, since it has the
least possible connections with the input spaces. These ex-
amples suggest two criteria for ranking the blends; we pro-
vide a computational characterisation of them below.

5The amalgam-based algorithm produces many blends by fol-
lowing alternative generalisation paths.
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Chord transitions description and blending
Individual chord transitions are the ‘atoms’ of the method-
ology followed herein to construct new transition matrices.
Specifically, transition sets from two musical idioms provide
input transitions for blending, producing a list of blended
transitions that are afterwards embeded in an extended har-
monic space. This methodology is described briefly in the
next section while some definitions regarding chord transi-
tions follow.

Definition 1. A chord transition c is described by a set of
features F .

In this work a transition is represented by 17 features. Fea-
tures 1-6 refer to the involved chords. Features 8 to 10 indi-
cate changes during the transitions and are based on the Di-
rected Interval Class (DIC) vector (Cambouropoulos, Katsi-
avalos, and Tsougras, 2013; Cambouropoulos, 2012). Fea-
ture 7 accounts for the change that occurred regarding the
chords’ root notes. The features considered important in this
work are the following:

1. fromRoot: the root pitch class of the first chord,

2. toRoot: the root pitch class of the second chord,

3. fromType: the type of the first chord (GCT base),

4. toType: the type of the second chord (GCT base),

5. fromPCs: the pitch classes included in the first chord,

6. toPCs: the pitch classes included in the second chord,

7. DICinfo: the DIC vector of the transition,

8. DIChas0: Boolean value indicating whether the DIC of
the transition has 0,

9. DIChas1: As above but for DIC value 1,

10. DIChasMinus1: As above but for DIC value −1,

11. ascSemZero: Boolean value indicating whether the first
chord has the relative pitch class value 11,

12. descSemZero: As above but value 1,

13. semZero: As above but for value 11 or 1,

14. ascSemNextRoot: Boolean value indicating whether the
first chord has a pitch class with ascending semitone rela-
tion with the pitch class of the second chord’s root,

15. descSemNextRoot: As above but with descending semi-
tone,

16. semNextRoot: As above but with either ascending or de-
scending semitone, and

17. 5thRootRelation: Boolean value indicating whether the
first chord’s root note is a fifth above of the second’s.

Each feature can be considered as a function that assigns
a value to a chord transition c. Features’ values are defined
differently depending on the properties they represent. For
instance, features 3 to 8 are set-value functions that assign
a set of values to a chord. We refer to them as Fi(c). The
value of the feature 7 is a vector and we refer to it as �f(c).
Finally, all the other features are binary functions and we
refer to them as fi(c).

From transition blends to transition matrices
In the literature, an effective and common way to describe
chord progressions in a music idiom in a statistical man-
ner is by using first-order Markov models (see Kaliakatsos-
Papakostas and Cambouropoulos (2014); Simon, Morris,
and Basu (2008), among others). Such models reflect the
probabilities of each chord following other chords in the id-
iom, as trained or statistically measured throughout all the
pieces in the examined idiom. In this context, individual
transitions play an important role on indicating particular
characteristics of an idiom.

A convenient way to represent a first order Markov model
is through transition matrices, which include one respec-
tive row and column for each chord in the examined idiom.
The probability value in the i-th row and the j-th column
exhibits the probability of the i-th chord going to the j-th
—the probabilities of each row sum to unit. The utilised
chords are actually represented by chord group exemplars,
obtained by the method described in Kaliakatsos-Papakostas
et al. (2015), while transitions between chords that pertain
to the same chord group are disregarded. The represen-
tation of chords is based on the General Chord Type rep-
resentation (Cambouropoulos, Kaliakatsos-Papakostas, and
Tsougras, 2014).

Then, an important question is: How would a blended id-
iom be expressed in terms of a transition matrix, provided
that the transition matrices of two initial idioms are avail-
able?

The idea examined in the present system is to create an
extended transition matrix that includes new transitions that
allow moving across chords of the initial idioms by poten-
tially using new chords. The examined methodology uses
transition blending to create new transitions that: (a) maxi-
mally preserve the common parts of transitions between the
two initial spaces, and (b) incorporate blended characteris-
tics for creating a smooth ‘morphing’ harmonic effect when
moving from chords of one space to chords of the other. An
abstract illustration of an extended matrix is given in Fig-
ure 4.

By analysing the graphical representation of an extended
matrix as depicted in Figure 4 the following facts are high-
lighted:

1. By using transitions in Ii, only chords of the i-th idiom
are used. When using these transitions, the resulting har-
monisations preserve the character of idiom i.

2. Transitions in Ai−j create direct jumps from chords of the
i-th to chords of the j-th idiom. Blended transitions in
Ai−j can be directly included in the extended matrix.

3. Transitions in Bi−X constitute harmonic motions from a
chord of idiom i to a newly created chord by blending.
Similarly, transitions in the BX−j arrive at chords in idiom
j from new chords. For moving from idiom i to idiom j
using one external chord cx that was produced by blend-
ing, a chain of two transitions is needed: ci → cx followed
by a transition cx → cj , where ci in idiom i and cj in id-
iom j respectively. A chain of two consecutive transitions
with one intermediate external chord from chords of i to
chords of j will be denoted as Bi−X−j.
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Figure 4: Graphical description of an extended matrix that
includes transition probabilities of both initial idioms and of
several new transitions generated through transition blend-
ing. These new transitions allow moving across the initial
idioms, creating a new extended idiom that is a superset of
the initial ones.

4. Sector C transitions are disregarded since they incorpo-
rate pairs of chords that exist outside the i-th and j-th
idioms, violating our hypothesis for moving from one
known chord sets to the other using one new chord at
most.
Based on this analysis of the extended matrix, a method-

ology is proposed for using blends between transitions in I1
and I2. Thereby, transitions in I1 are blended with those
in I2 and a certain number of best blends is stored for fur-
ther investigation, creating a pool of best blends. Based on
multiple simulations, a large number of the best blends (i.e.
100) in each blending simulation should be inserted in the
pool of best blends (B), so that several commuting scenarios
can be created between the initial transition spaces. Thus,
a greater number of blends in the pool of best blends intro-
duces a larger number of possible commuting paths in Ai−j

or in Bi−X−j.

Evaluation of transition blending via arguments
By applying the aforementioned blending process a pool
of best blends is created that is afterwards used for con-
necting the transition blocks of two initial idioms, through
forming an extended matrix. When a music expert is us-
ing the system, she/he is able to select pairs of initial input
idioms6, choose which aspects of blending are important
through arguments (analysed in the following paragraphs)
and evaluate/re-adjust this choice by observing the produced
results in the extended matrix.

The user evaluates the importance of several transition
features by answering questions based on the connecting
transitions produced by blending in the extended matrix.
The features related to the transitions and their constituent
chords are classified into 9 questions (Table 1).

6Except from the idioms used in this paper, new idioms can (a)
be manually constructed by providing permitted chord transitions
and their probabilities, or (b) learned from data using the first order
Markov matrix of chord transitions.

Question Chord Properties Transition Changes

Q1

fromRoot
toRoot
fromType
toType

Q2 fromRelPCs
toRelPCs

Q3 DIChas0
Q4 DIChas1

DIChasN1
Q5 DIChas2

DIChasN2
Q6 DICinfo
Q7 ascSemZero

descSemZero
semZero

Q8 ascSemNextRoot
descSemNextRoot
semNextRoot

Q9 5thRootRel

Table 1: Abstraction of chords’ and transition changes’ fea-
tures.

Q1: Are roots and types of chords important?
Q2: Are individual pitch classes of chords important?
Q3: Are repeating pitch classes in transitions important?
Q4: Are semitone steps in transitions important?
Q5: Are tone steps in transitions important?
Q6: Are the intervalic contents of transitions important?
Q7: Are semitone motions to the tonic important?
Q8: Are semitones to the second chord’s root important?
Q9: Are motions of the chord roots by 5th important?
The first two questions concern characteristics of the chords
that constitute the transition (features 1 to 6), while the re-
maining seven questions concern intervalic changes that oc-
cur within the transition (features 7 to 17). Relating ques-
tions to transition features was performed with the involve-
ment of music experts, to ensure that the mapping is as ac-
curate and as informative to the user as possible.

We denote the set of questions available to the user as Q.
When a user selects a question, an argument is automatically
generated. For the sake of this paper, an argument is defined
as follows.
Definition 2. An argument A is a tuple 〈q, F 〉, where q ∈ Q
and F ⊂ F .
The user can specify at most 9 arguments, each of them is
mapped to a set of properties. The set of user arguments
{A1, . . . , A9} corresponding to answers to Q will be de-
noted by A. We assume to have a function ψ : A → F
that returns the set of chord and transition properties associ-
ated with an argument (e.g., for the purposes of the current
analysis, Table 1 specifies ψ as a look-up function). The ar-
guments are used to compute two criteria in order to rate a
blend: total association and symmetry.
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The total association indicates the total number of prop-
erties that a blend inherits from the inputs. A blend with
higher input associations is preferable since it is structurally
more deeply related with the inputs. The total association
is calculated by taking the individual association of a blend
w.r.t. the input chord transitions into account. The individ-
ual association of a blend b w.r.t. to an input I , denoted as
a(b, I), is defined as:

a(b, I) =
∑
Ai∈A

Val(Ai, b, I)

where Val : A → R is a function that takes an argument as
input and aggregates the values of the chord and transition
change properties associated with the argument, by inter-
preting them according to some music background knowl-
edge. Depending on the type of argument, Val is defined in
different ways.

When an argument refers to the roots and types of chords
(A1), Val is defined as:

Val(A1, b, I) =
∑

Fj∈ψ(A1)

equals(Fj(I), Fj(b))

The value of A1 is calculated by counting how many proper-
ties —among fromRoot, toRoot, fromType and toType— are
equals between a blend b and an input I . equals is a function
that returns 1 when two sets are equals and 0 otherwise.

When an argument refers to the individual pitch classes of
chords (A2), Val is defined as:

Val(A2, b, I) =
∑

Fj∈ψ(A2)

|Fj(I) ∩ Fj(b)|

The value of A2 is calculated as the number of elements
that are common in the set-value properties fromRelPCs and
toRelPCs of a blend b and an input I .

When an argument refers to the intervalic contents of tran-
sitions (A6), Val is defined as:

Val(A6, b, I) = norm[0,1](ρ�f(I), �f(b))

The value of A6 is calculated as the Pearson’s correlation
coefficient of the vector-value property DICinfo of a blend b
and an input I . Higher correlations in the DIC vectors of two
transitions indicate higher resemblance; norm is a function
that normalises the Pearson’s coefficient from the interval
[−1, 1] to the interval [0, 1].
For all the other types of arguments, Val is defined as:

Val(Ai, b, I) =
∑

fj∈ψ(Ai)

1− (fj(I)− fj(b))

Based on the above definitions, the total association value is
the sum of the individual associations.

assoc(b) =
∑
Ii∈I

a(b, Ii)

where I is the set of input spaces, containing in this specific
case, I1 and I2.

Symmetry, on the other hand, reflects the balance of prop-
erties that a blend inherits from both input spaces. A blend

has a high symmetry when it inherits an almost equal pro-
portion of properties from both input spaces. Blends having
higher symmetry are preferred to those with lower symme-
try, since a high symmetry reflects a stronger hybridisation
of structural characteristics. Hybridisation is an important
principle to evaluate transition blends.

The blend symmetry is defined in terms of its ‘asymme-
try’. The asymmetry of a blend w.r.t. the inputs, denoted as
asym(b), is calculated as:
∣∣∣∣
a(b, I1)

2 + a(b, I1)a(b, I2)

a(b, I1)2 + a(b, I2)
− a(b, I2)

2 + a(b, I1)a(b, I2)

a(b, I2)2 + a(b, I1)

∣∣∣∣

The value of asym(b) is defined in [0, 1], where 0 stands
for a perfect symmetry (equal association with both inputs)
and 1 stands for total asymmetry (association only with one
input). Additionally, the non-absolute version of the above
equation suggests the prevailing input, with a negative value
indicating dominating association of the blend with the first
input and a positive value contrarily.

The total rate of a blend is computed by taking the input
association and asymmetry values into account.

rate(b) =
assoc(b)(1− asym(b))

assoc(b) + (1− asym(b))

The above expression promotes pairs of association and
symmetry that are both high, while a simple sum would al-
low a low value of the one to be covered by the other.

Finally, a decision making criterion to compare any pair
of blends b1, b2 ∈ B can be defined as follows.

Definition 3 (Decision criterion). A blend b1 is preferred to
a blend b2 if and only if rate(b1) ≥ rate(b2).

It is worthy to notice that the above criterion guarantees
that any pair of blends is comparable, and, consequently, it
allows to decide which blends are the best ones. This is an
important property for blend evaluation and, generally, for
approaches to argumentation-based decision making (Am-
goud and Prade, 2009; Bonet and Geffner, 1996).

System evaluation
Referring to Figure 1, via the interface α, the user has access
to modules γ, and β which can be used to specify concepts
that will inform the resulting product, namely, the input id-
ioms and arguments that impose constraints on the gener-
ated blend. These are translated by the system into process-
friendly formats. Module ε embodies the (process-level)
concept of a system that make use of the supplied idioms and
the blending properties to generate example transition matri-
ces, ζ. In the current version of the system, these transitions
are evaluated by the user (music expert) in step ι using so-
phisticated harmonic knowledge that reflects an historically
established musical aesthetic. The user can then return to
the GUI α, and adjust the settings of γ and β to regenerate
the transitions.

This is illustrated in Figure 5 in box P1, using the dia-
grammatic extension to the FACE model by Colton et al.
(2014). Here, capital letters F , A, C, or E are creative
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acts that generate a framing, aesthetic, concept, or exam-
ple, respectively. Administrative acts S and T denote selec-
tion and translation. Lower-case letters denote the generated
artefact in each case (e.g., the concept c corresponding to
the concept-creation act C). Subscripts p, g, or m indicate
whether the act takes place at the process, ground, or meta
level. Inside each box, stacks show the dependence in devel-
opment epochs, and arrows show run-time message passing.
Acts taken by the programmer or user are decorated with a
bar, whereas acts taken by the system itself receive no extra
decoration.

In the current version of the system, apart from the pro-
grammer’s creative acts specifying the modules and their in-
terconnections, and the algorithm Cε

p that turns inputs into
blends, the user, who is assumed to be a music expert, must
intervene in the system in two places.

First, the user defines system settings Cγ
g , Cβ

g that cor-
respond to the selection of input idioms and of arguments
respectively. Second, after the run completes, he or she eval-
uates the system output via Aι

g .
The system’s primary responsibilities take place through

the creative acts Eε
g , which generate blends, and

S[aβ,γg ](eε∗), in which the aesthetic Aβ,γ
g (a unified label for

assoc and asym, which are defined anew in each run, based
on a fixed translation of the user’s arguments, as specified in
the previous section) is applied to rate the possible blends,
and select to a final extended transition matrix.

Therefore, the key idea behind what has been imple-
mented so far is an ‘automated ranking/evaluation’ step that
guides the selection of blends, S[aβ,γg ](eε∗) according to
the arguments defined by the user. The development of the
programmatic components that operationalise this process
has relied on both computer science and musicological in-
sights. This approach has been characterised as meaningful
per se through informal feedback provided by musical ex-
perts – but is perhaps especially valuable because it consti-
tutes a prototype for more involved automated evaluation of
computer-generated harmonic spaces.

Indeed, the next step towards the development of a more
autonomously creative system using the same architecture is
fairly clear: future work would need to ‘close the loop’ com-
putationally, connecting the evaluation of generated tran-
sition matrices with the parameter-setting (i.e., argumenta-
tion) stage, and making this run autonomously to refine the
system’s behavior. This as-yet hypothetical situation is il-
lustrated in the box P2.

Here, the programmer has translated some of the user-
specified aesthetics into code T [Aι

g], and invented a meta-
level concept Cα

m defining a system component that can au-
tomatically apply these aesthetics to the generated transition
matrices eζg as in order to automatically generate new system
settings Cγ

g , Cβ
g .

Conclusion, Discussion and Future Work
In this paper, we described a methodology for harmonic
blending and we proposed a creative system that assists
musicologists with the evaluation and enhancement of har-
monic innovation. We defined some harmonic features of

Aβ,γ
g = 〈T (Cβ

g , C
γ
g )〉

〈Eε
g〉∗ = Cε

p(a
β,γ
g )

eζg = 〈S[aβ,γg ](eε∗)〉 〈Aι
g(e

ζ
g)〉

P1 Cι
p(t(a

ι
g)(e

ζ
g)) = 〈Cα

m〉

Aβ,γ
g = 〈T (Cβ

g , C
γ
g )〉

〈Eε
g〉∗ = Cε

p(a
β,γ
p )

eζg = 〈S[aβ,γg ](eε∗)〉 〈T [Aι
g](e

ζ
g)〉

P2

Figure 5: The current implementation P1 prototypes auto-
mated evaluation of blends according to user’s arguments;
this points to a proposed future implementation P2 with fur-
ther automation.

chord transitions utilised for evaluating blends of transitions,
leading to the invention of novel harmonic spaces. The sys-
tem allows a musicologist to specify arguments over these
features that are taken into account in the generation of new
harmonic spaces. The music expert can then assess whether
the new harmonic idiom makes musicological sense and re-
adjust the arguments to explore alternative blends that can
potentially produce better harmonic spaces.

The main advantage of the current system is the agile in-
teraction through which the user can express desirable prop-
erties over the transition blends and their argument-based
evaluation in order to produce musically meaningful results.
The added value of argumentation is the ranking/evaluation
of blended transition—obtained by conceptual blending of
two input transition belonging to two musical idioms—by
answering questions which abstract several properties of
chord transitions. On the other hand, the evaluation of the
creative output of the system, i.e., an extended harmonic
space that includes blended transitions, is carried out by the
user via an introspective argumentative dialogue.

In a future work we intent to use the argumentation-based
process for evaluating the blended harmonisations of user
defined melodies, i.e., actual music output. Additionally,
mapping the properties of the blended idiom or, at a latter
stage of a harmonised melody, back to the parameter-setting
stage opens an interesting direction for future research and
further improvements of the system. The added value of
argumentation can be stressed, for instance, by letting the
system suggest possible refinements of the initial user ar-
guments, progressively converting part of the introspective
user evaluation into a more explicit format. For example,
a future version of the system would be based on identify-
ing harmonic features of the input spaces that automatically
suggest an ‘optimal’ set of initial arguments. The current
version of the system is an already-usable prototype on the
way towards the development of a more autonomous cre-
ative system.
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