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Abstract
We are taking an information theoretic approach to the
question of the best way to harmonise melodies. Is it
best to add the bass first, as has been traditionally the
case? We describe software which uses statistical ma-
chine learning techniques to learn how to harmonise
from a corpus of existing music. The software is able
to perform the harmonisation task in various different
ways. A performance comparison using the information
theoretic measure cross-entropy is able to show that, in-
deed, the bass first approach appears to be best. We then
use this overall strategy to investigate the performance
of specialist models for the prediction of different musi-
cal attributes (such as pitch and note length) compared
with single models which predict all attributes. We find
that the use of specialist models affords a definite per-
formance advantage. Final comparisons with a simpler
model show that each has its pros and cons. Some har-
monisations are presented which have been generated
by some of the better performing models.

Introduction
In our ongoing research, we are developing computational
models of four-part harmony such that alto, tenor and bass
parts are added to a given soprano part in a stylistically suit-
able way. In this paper we compare different strategies for
carrying out this creative task. In textbooks on four-part har-
mony, students are often encouraged to harmonise a melody
in stages. In particular, it is usual for the bass line to be
added first, with harmonic symbols such as Vb (dominant,
first inversion) written underneath. The harmony is then
completed by filling in the inner (alto and tenor) parts. This
paper sets out to show what information theory has to say
about the best way to approach harmonisation. Is adding the
bass line first optimal, or is there a better approach?
In order to investigate questions such as this, we have

written software based on multiple viewpoint systems (Con-
klin and Witten 1995) which enables the computer to learn
for itself how to harmonise by building a statistical model
from a corpus of existing music. The multiple view-
point framework allows different attributes of music to be
modelled. The predictions of these individual models are
then combined to give an overall prediction. The multi-
ple viewpoint systems are selected automatically, on the ba-
sis of minimising the information theoretic measure cross-

entropy. We have developed and implemented three increas-
ingly complex versions of the framework, which allow mod-
els to be constructed in different ways. The first two versions
are particularly pertinent to the aims of this paper, since they
facilitate precisely the comparisons we wish to make with-
out the time complexity drawbacks of the more complex ver-
sion 3. The latter is therefore not utilised in this part of our
research.
The fact that the resulting models are statistical (and in-

deed self-learned from a corpus) means that harmonies are
generated in a non-deterministic way. The harmonies are
more or less probable, rather than right or wrong, with an
astronomical number of ways for a melody to be harmonised
from the probability distributions. Of course, there is little
point in producing something novel if it is also deemed to
be bad. Our aim is to hone the models in such a way that
the subjective quality and style of the generated harmony is
consistently similar to that of the corpus, whilst retaining al-
most infinite variety. In this way, the computational models
can be thought of as creative in much the same way as a
human composer (or at the very least that they imitate such
creativity). Finding a good overall strategy for carrying out
the harmonisation task is an important part of this improve-
ment process.

Multiple Viewpoint Systems
There follows a brief description of some essential elements
of multiple viewpoint systems. In order to keep things sim-
ple we look at things from the point of view of melodic mod-
elling (except for the subsection entitled Cross-entropy and
Evaluation).

Types of Viewpoint
Basic viewpoints are the fundamental musical attributes that
are predicted, such as Pitch and Duration. The domain
(or alphabet) of Pitch is the set of MIDI values of notes
seen in the melodies comprising the corpus. A semibreve
(or whole note) is divided into 96 Duration units; there-
fore the domain of Duration is the set of integer values
representing note lengths seen in the corpus.
Derived viewpoints such as Interval (sequential pitch

interval) and DurRatio (sequential duration ratio) are
derived from, and can therefore predict, basic types (in
this case Pitch and Duration respectively). A B4
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(MIDI value 71) following a G4 (MIDI value 67) has an
Interval value of 4. Descending intervals have negative
values. Similarly, a minim (half note) following a crotchet
(quarter note) has a DurRatio value of 2.
Threaded viewpoints are defined only at certain positions

in a sequence, determined by Boolean test viewpoints such
as Tactus; for example, Pitch ! Tactus has a defined
Pitch value only on Tactus beats (i.e., the main beats in
a bar).
A linked viewpoint is the conjunction of two or more sim-

ple (or primitive) viewpoints; for example, DurRatio ⊗
Interval is able to predict both Duration and Pitch.
If any of the constituent viewpoints are undefined, then the
linked viewpoint is also undefined. These are just a few of
the viewpoints we have implemented. See Conklin and Wit-
ten (1995) for more information about viewpoints.

N-gram Models
So far, N-gram models, which are Markov models em-
ploying subsequences of N symbols, have been the mod-
elling method of choice when using multiple viewpoint sys-
tems. The probability of the N th symbol, the prediction,
depends only upon the previousN − 1 symbols, the context.
The number of symbols in the context is the order of the
model. Only defined viewpoint values are used in N-grams;
sequence positions with an undefined viewpoint value are
skipped. See Manning and Schütze (1999) for more details.

Modelling Viewpoints
What we call a viewpoint model is a weighted combination
of various orders of N-grammodel of a particular viewpoint.
The combination is achieved by Prediction by Partial Match
(Cleary and Witten 1984). PPM makes use of a sequence
of models, which we call a back-off sequence, for context
matching and the construction of complete prediction prob-
ability distributions. The back-off sequence begins with the
highest order model, proceeds to the second-highest order,
and so on. An escape method (in this research, method
C) determines prediction probabilities, which are generally
high for predictions appearing in high-order models, and
vice versa. If necessary, a probability distribution is com-
pleted by backing off to a uniform distribution.

Combining Viewpoint Models
Amultiple viewpoint system comprises more than one view-
point; indeed, usually many more. The prediction proba-
bility distributions of the individual viewpoint models must
be combined. The first step is to convert these distributions
into distributions over the domain of whichever basic type
is being predicted at the time. A weighted arithmetic or ge-
ometric (Pearce, Conklin, and Wiggins 2004) combination
technique is then employed to create a single distribution. A
run-time parameter called a bias affects the weighting. See
Conklin (1990) for more information.

Long-term and Short-term Models
Conklin (1990) introduced the idea of using a combination
of a long-term model (LTM), which is a general model of a

style derived from a corpus, and a short-term model (STM),
which is constructed as a piece of music is being predicted or
generated. The latter aims to capture musical structure pe-
culiar to that piece. Currently, the same multiple viewpoint
system is used for each. The LTM and STM distributions are
combined in the same way as the viewpoint distributions, for
which purpose there is a separate bias (L-S bias).

Cross-entropy and Evaluation
Cross-entropy is used to objectively compare the prediction
performance of different models. If we define Pm(Si|Ci,m)
as the probability of the ith musical symbol given its con-
text for a particular model m, and assume that there are a
total of n sequential symbols, then cross-entropy is given
by −(1/n)

∑n
i=1

log2 Pm(Si|Ci,m). Jurafsky and Martin
(2000) note that because the cross-entropy of a sequence of
symbols (according to some model) is always higher than its
true entropy, the most accurate model (i.e., the one closest
to the true entropy) must be the one with the lowest cross-
entropy. In addition, because it is a “per symbol” measure,
it is possible to similarly compare generated harmonisations
of any length. Harmonisations with a low cross-entropy are
likely to be simpler and more predictable to a listener, while
those with a high cross-entropy are likely to be more com-
plex, more surprising and in the extreme possibly unpleas-
ant. See Manning and Schütze (1999) for more details on
cross-entropy.

Model Construction
Cross-entropy is also used to guide the automatic construc-
tion of multiple viewpoint systems. Viewpoints are added
(and sometimes removed) from a system stage by stage.
Each candidate system is used to calculate the average cross-
entropy of a ten-fold cross-validation of the corpus. The sys-
tem producing the lowest cross-entropy goes on to the next
stage of the selection process. For example, starting with the
basic system {Duration, Pitch}, of all the viewpoints
tried let us assume that ScaleDegree lowers the cross-
entropy most on its addition. Our system now becomes
{Duration, Pitch, ScaleDegree}. Duration can-
not be removed at this stage, as a Duration-predicting
viewpoint must be present. Assuming that on remov-
ing Pitch the cross-entropy rises, Pitch is also re-
tained. Let us now assume that after a second round
of addition we have the system {Duration, Pitch,
ScaleDegree, Interval}. Trying all possible dele-
tions, we may now find that the cross-entropy decreases on
the removal of Pitch, giving us the system {Duration,
ScaleDegree, Interval}. The process continues until
no addition can be found to lower the cross-entropy by a pre-
determined minimum amount. When selection is complete,
the biases are optimised.

Development of Multiple Viewpoints
The modelling of melody is relatively straightforward,
in that a melody comprises a single sequence of non-
overlapping notes. Such a sequence is ideal for creating
N-grams. Harmony is much more complex, however. Not
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only does it consist (for our purposes) of four interrelated
parts, but it usually contains overlapping notes. In other
words, music is usually not homophonic; indeed, very few of
the major key hymn tune harmonisations (VaughanWilliams
1933) in our corpora are completely homophonic. Some pre-
processing of the music is necessary, therefore, to make it
amenable to modelling by means of N-grams. We use full
expansion on our corpora (corpus ‘A’ and corpus ‘B’ each
contain fifty harmonisations), which splits notes where nec-
essary to achieve a sequence of block chords (i.e., without
any overlapping notes). This technique has been used be-
fore in relation to viewpoint modelling (Conklin 2002). To
model harmony correctly, however, we must know which
notes have been split. Basic viewpoint Cont is therefore
introduced to distinguish between notes which are freshly
sounded and those which are a continuation of the preced-
ing one. Currently, the basic viewpoints (or attributes) are
predicted at each point in the sequence in the following or-
der: Duration, Cont and then Pitch.

Version 1
The starting point for the definition of the strictest possible
application of viewpoints is the formation of vertical view-
point elements (Conklin 2002). An example of such an el-
ement is 〈69, 64, 61, 57〉, where all of the values are from
the domain of the same viewpoint (i.e., Pitch, as MIDI
values), and all of the parts (SATB) are represented. This
method reduces the entire set of parallel sequences to a sin-
gle sequence, thus allowing an unchanged application of the
multiple viewpoint framework, including its use of PPM.
Only those elements containing the given soprano note are
allowed in the prediction probability distribution, however.
This is the base-level model, to be developed with the aim
of substantially improving performance.

Version 2
In this version, it is hypothesised that predicting all unknown
symbols in a vertical viewpoint element at the same time is
neither necessary nor desirable. It is anticipated that by di-
viding the overall harmonisation task into a number of sub-
tasks (Allan and Williams 2005; Hild, Feulner, and Menzel
1992), each modelled by its own multiple viewpoint system,
an increase in performance can be achieved. Here, a subtask
is the prediction or generation of at least one part; for exam-
ple, given a soprano line, the first subtask might be to predict
the entire bass line. This version allows us to experiment
with different arrangements of subtasks. As in version 1,
vertical viewpoint elements are restricted to using the same
viewpoint for each part. The difference is that not all of the
parts are now necessarily represented in a vertical viewpoint
element.

Comparison of Subtask Combinations
In this section we carry out the prediction of bass given
soprano, alto/tenor given soprano/bass, tenor given so-
prano, alto/bass given soprano/tenor, alto given soprano, and
tenor/bass given soprano/alto (i.e., prediction in two stages),
in order to ascertain the best performing combination for

subsequent comparisons. Prediction in three stages is not
considered here because of time limitations.
Earlier studies in the realm of melodic modelling re-

vealed that the model which performed best was an LTM up-
dated after every prediction in conjunction with an STM (a
BOTH+model) using weighted geometric distribution com-
bination. Time constraints dictate the assumption that such a
model is likely to perform similarly well with respect to the
modelling of harmony. In addition, only corpus ‘A’, a bias
of 2 and an L-S bias of 14 are used for viewpoint selection
(as for the best melodic BOTH+ runs using corpus ‘A’). As
usual, the biases are optimised after completion of selection.
Here, we predict Duration, Cont and Pitch together
(i.e., using a single multiple viewpoint system at each pre-
diction stage). We also use the seen Pitch domain at this
juncture (i.e., the domain of Pitch vertical viewpoint el-
ements seen in the corpus, as opposed to all possible such
elements).
It is appropriate at this point to make some general obser-

vations about the bar charts presented in this paper. Compar-
isons are made for a range of h̄ (maximum N-gram order)
from 0 to 5. Each value of h̄ may have a different automati-
cally selected multiple viewpoint system. Please note that all
bar charts have a cross-entropy range of 2.5 bits/prediction,
often not starting at zero. All bars have standard errors as-
sociated with them, calculated from the cross-entropies ob-
tained during ten-fold cross-validation (using final multiple
viewpoint systems and optimised biases).
Figure 1 compares the prediction of alto given soprano,

tenor given soprano, and bass given soprano. The first thing
to notice is that the error bars overlap. This could be taken
to mean that we cannot (or should not) draw conclusions in
such cases; however, the degree of overlap and the consis-
tency of the changes across the range of h̄ is highly sugges-
tive of the differences being real. A clinching quantitative
argument is reserved until consideration of Figure 3. Pre-
diction of the alto part has the lowest cross-entropy and pre-
diction of the bass has the highest across the board. This is
very likely to be due to the relative number of elements in
the Pitch domains for the individual parts (i.e., 18, 20 and
23 for alto, tenor and bass respectively). The lowest cross-
entropies occur at an h̄ of 1 except for the bass, which has
its minimum at an h̄ of 2 (this cross-entropy is only very
slightly lower than that for an h̄ of 1, however).
There is a completely different picture for the final stage

of prediction. Figure 2 shows that, having predicted the alto
part with a low cross-entropy, the prediction of tenor/bass
has the highest. Similarly, the high cross-entropy for the
prediction of the bass is complemented by an exceptionally
low cross-entropy for the prediction of alto/tenor (notice that
the error bars do not overlap with those of the other predic-
tion combinations). Once again, this can be explained by
the number of elements in the part domains: the sizes of the
cross-product domains are 460, 414 and 360 for tenor/bass,
alto/bass and alto/tenor respectively. Although we are not
using cross-product domains, it is likely that the seen do-
mains are in similar proportion. The lowest cross-entropies
occur at an h̄ of 1.
Combining the two stages of prediction, we see in Fig-
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Figure 1: Bar chart showing how cross-entropy varies
with h̄ for the version 2 prediction of alto given soprano,
tenor given soprano, and bass given soprano using the seen
Pitch domain. Duration, Cont and Pitch are pre-
dicted using a single multiple viewpoint system at each pre-
diction stage.

ure 3 that predicting bass first and then alto/tenor has the
lowest cross-entropy. Notice, however, that the error bars of
this model overlap with those of the other models. This is a
critical comparison, requiring a high degree of confidence in
the conclusions we are drawing. Let us look at the h̄ = 1 and
h̄ = 2 comparisons in more detail, as they are particularly
pertinent. In both cases, all ten cross-entropies produced by
ten-fold cross-validation are lower for B then AT than for A
then TB; and nine out of ten are lower for B then AT than for
T then AB. The single increase is 0.11 bits/chord for an h̄ of
1 and 0.09 bits/chord for an h̄ of 2 compared with a mean
decrease of 0.22 bits/chord for the other nine values in each
case. This demonstrates that we can have far greater confi-
dence in the comparisons than the error bars might suggest.
A likely reason for this is that there is a range of harmonic
complexity across the pieces in the corpus which is reflected
as a range of cross-entropies (ultimately due to composi-
tional choices). This inherent cross-entropy variation seems
to be greater than the true statistical variation applicable to
these comparisons.
We can be confident, then, that predicting bass first

and then alto/tenor is best, reflecting the usual human ap-
proach to harmonisation. The lowest cross-entropy is 4.98
bits/chord, occurring at an h̄ of 1. Although having the same
cross-entropy to two decimal places, the very best model
combines the bass-predicting model using an h̄ of 2 (opti-
mised bias and L-S bias are 1.9 and 53.2 respectively) with
the alto/tenor-predicting model using an h̄ of 1 (optimised
bias and L-S bias are 1.3 and 99.6 respectively).
Table 1 gives some idea of the complexity of the multi-

ple viewpoint systems involved, listing as it does the first six
viewpoints automatically selected for the prediction of bass
given soprano (h̄ = 2) and alto/tenor given soprano/bass
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Figure 2: Bar chart showing how cross-entropy varies with h̄
for the version 2 prediction of tenor/bass given soprano/alto,
alto/bass given soprano/tenor and alto/tenor given so-
prano/bass using the seen Pitch domain. Duration,
Cont and Pitch are predicted using a single multiple
viewpoint system at each prediction stage.

(h̄ = 1). Many of the primitive viewpoints involved have
already been defined or are intuitively obvious. LastIn-
Phrase and FirstInPiece are either true of false, and
Piece has three values: first in piece, last in piece or other-
wise. Metre is more complicated, being an attempt to de-
fine metrical equivalence within and between bars of various
time signatures. Notice that only two of the viewpoints are
common to both systems. In fact, of the twenty-four view-
points in the B given S system and twelve in the AT given SB
system, only five are common. This demonstrates the degree
to which the systems have specialised in order to carry out
these rather different tasks. The difference in the size of the
systems suggests that the prediction of the bass part is more
complicated than that of the inner parts, as reflected in the
difference in cross-entropy.

The Effect of Model Order
Figure 1 indicates that, for example, there is only a small re-
duction in cross-entropy from h̄ = 0 to h̄ = 1. The degree
of error bar overlap means that even this small reduction is
questionable. Is it possible that there is no real difference
in performance between a model using unconditional proba-
bilities and one using the shortest of contexts? Let us, in the
first place, examine the individual ten-fold cross-validation
cross-entropy values. All ten of these values are lower for
an h̄ of 1, giving us confidence that there is indeed a small
improvement. Having established that, however, it would be
useful to explain why the improvement is perhaps smaller
than we might have expected.
One important reason for the less than impressive im-

provement is that although the h̄ = 0 model is nominally
unconditional, the viewpoints Interval, DurRatio and
Interval! Tactus appear in the h̄ = 0 multiple view-
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Figure 3: Bar chart showing how cross-entropy varies with
h̄ for the version 2 prediction of alto then tenor/bass, tenor
then alto/bass and bass then alto/tenor given soprano using
the seen Pitch domain. Duration, Cont and Pitch
are predicted using a single multiple viewpoint system at
each prediction stage.

point system (linked with other viewpoints). These three
viewpoints make use of attributes of the preceding chord;
therefore with respect to predicted attributes Duration
and Pitch, this model is partially h̄ = 1. This hidden con-
ditionality is certainly enough to substantially improve per-
formance compared with a completely unconditionalmodel.
Another reason is quite simply that the corpus has failed

to provide sufficient conditional statistics; in other words,
the corpus is too small. This is the fundamental reason for
the performance dropping off above an h̄ of 1 or 2. We
would expect peak performance to shift to higher values of
h̄ as the quantity of statistics substantially increases. Sup-
porting evidence for this is provided by our modelling of
melody. Much better melodic statistics can be gathered from

Viewpoint B AT
Pitch ×

Interval⊗ InScale ×

Cont⊗ TactusPositionInBar × ×

Duration⊗ (ScaleDegree# LastInPhrase) × ×

Interval⊗ (ScaleDegree# Tactus) ×

ScaleDegree⊗ Piece ×

Cont⊗ Interval ×

DurRatio⊗ TactusPositionInBar ×

ScaleDegree⊗ FirstInPiece ×

Cont⊗ Metre ×

Table 1: List of the first six viewpoints automatically se-
lected for the prediction of bass given soprano (B, h̄ = 2)
and alto/tenor given soprano/bass (AT, h̄ = 1).

the same corpus because the Pitch domain is very much
smaller than it is for harmony. A BOTH+ model shows a
large fall in cross-entropy from h̄ = 0 to h̄ = 1 (with error
bars not overlapping), while peak performance occurs at an
h̄ of 3.
Figure 2 reveals an even worse situation with respect to

performance differences across the range of h̄. For TB given
SA, for example, it is not clear that there is a real improve-
ment from h̄ = 0 to h̄ = 1. In this case, there is a reduction
in five of the ten-fold cross-validation cross-entropy values,
but an increase in the other five. This is almost certainly due
to the fact that, having fixed the soprano and alto notes, the
number of tenor/bass options are severely limited; so much
so, that conditional probabilities can rarely be found. This
situation should also improve with increasing corpus size.

Separate Prediction of Attributes
We now investigate the use of separately selected and op-
timised multiple viewpoint systems for the prediction of
Duration, Cont and Pitch. Firstly, however, let us con-
sider the utility of creating an augmented Pitch domain.
Approximately 400 vertical Pitch elements appear in cor-
pus ‘B’ which are not present in corpus ‘A’, and there are
undoubtedly many more perfectly good chords which are
absent from both corpora. Such chords are unavailable for
use when the models generate harmony, and their absence
must surely skew probability distributions when predicting
existing data. One solution is to use a full Cartesian prod-
uct; but this is known to result in excessively long run times.
Our preferred solution is to transpose chords seen in the cor-
pus up and down, a semitone at a time, until one of the
parts goes out of the range seen in the data. Such elements
not previously seen are added to the augmented Pitch do-
main. Derived viewpoints such as ScaleDegree are able
to make use of the extra elements. We shall see shortly that
this change increases cross-entropies dramatically; but since
this is not a like-for-like comparison, it is not an indication
of an inferior model.
Figure 4 shows that better models can be created by se-

lecting separate multiple viewpoint systems to predict indi-
vidual attributes, rather than a single system to predict all
of them. The difference in cross-entropy is quite marked,
although there is a substantial error bar overlap. An h̄ of 1
is optimal in both cases. All ten cross-entropies produced
by ten-fold cross-validation are lower for the separate sys-
tem case, providing confidence that the improvement is real.
The lowest cross-entropy for separate prediction at h̄ = 1
is 5.44 bits/chord, compared with 5.62 bits/chord for predic-
tion together. The very best model for separate prediction,
with a cross-entropy of 5.35 bits/chord, comprises the best
performing systems of whatever the value of h̄.

Comparison of Version 1 with Version 2
A comparison involving Duration, Cont and Pitch
would show that version 2 has a substantially higher cross-
entropy than version 1. This is due to the fact that whereas
the duration of an entire chord is predicted only once in ver-
sion 1, it is effectively predicted twice (or even three times)
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Figure 4: Bar chart showing how cross-entropy varies with
h̄ for the version 2 prediction of bass given soprano fol-
lowed by alto/tenor given soprano/bass using the augmented
Pitch domain. The prediction of Duration, Cont and
Pitch separately (i.e., using separately selected multiple
viewpoint systems) and together (i.e., using a single multi-
ple viewpoint system) are compared.

in version 2. Prediction of Duration is set up such that,
for example, a minim may be generated in the bass given
soprano generation stage, followed by a crotchet in the final
generation stage, whereby the whole of the chord becomes
a crotchet. This is different from the prediction and gen-
eration of Cont and Pitch, where elements generated in
the first stage are not subject to change in the second. The
way in which the prediction of Duration is treated, then,
means that versions 1 and 2 are not directly comparable with
respect to that attribute.
By ignoring Duration prediction, and combining only

the directly comparable Cont and Pitch cross-entropies,
we can make a judgement on the overall relative perfor-
mance of these two versions. Figure 5 is strongly indicative
of version 2 performing better than version 1. Again, there is
an error bar overlap; but for an h̄ of 1, nine out of ten cross-
entropies produced by ten-fold cross-validation are lower for
version 2; and for an h̄ of 2, eight out of ten are lower for ver-
sion 2. The single increase for an h̄ of 1 is 0.07 bits/chord,
compared with a mean decrease of 0.22 bits/chord for the
other nine values. The mean of the two increased values for
an h̄ of 2 is 0.03 bits/chord, compared with a mean decrease
of 0.20 bits/chord for the other eight values.
As one might expect from experience of harmonisation,

predicting the bass first followed by the alto and tenor is bet-
ter than predicting all of the lower parts at the same time. It
would appear that the selection of specialist multiple view-
point systems for the prediction of different parts is bene-
ficial in rather the same way as specialist systems for the
prediction of the various attributes. The optimal version 2
cross-entropy, using the best subtask models irrespective of
the value of h̄, is 0.19 bits/prediction lower than that of ver-
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Figure 5: Bar chart showing how cross-entropy varies with
h̄ for the separate prediction of Cont and Pitch in the alto,
tenor and bass given soprano using the augmented Pitch
domain, comparing version 1 with version 2.

sion 1.
Finally, the systems selected using corpus ‘A’ are used in

conjunction with corpus ‘A+B’. Compared with Figure 5,
Figure 6 shows a much larger drop in cross-entropy for ver-
sion 1 than for version 2: indeed, the bar chart shows the
minimum cross-entropies to be exactly the same. Allowing
for a true variation smaller than that suggested by the error
bars, as before, we can certainly say that the minimum cross-
entropies are approximately the same. The only saving grace
for version 2 is that the error bars are slightly smaller. We
can infer from this that version 1 creates more general mod-
els, better able to scale up to larger corpora which may de-
viate somewhat from the characteristics of the original cor-
pus. Conversely, version 2 is capable of constructing models
which are more specific to the corpus for which they are se-
lected. This hypothesis can easily be tested by carrying out
viewpoint selection in conjunction with corpus ‘A+B’ (al-
though this would be a very time-consuming process).
Notice that there are larger reductions in cross-entropy

from h̄ = 0 to h̄ = 1 in Figure 6 than in Figure 5. The
only difference between the two sets of runs is the corpus
used; therefore this performance change must be due to the
increased quantity of statistics gathered from a larger corpus,
as predicted earlier in the paper.

Generated Harmony
Generation is achieved simply by random sampling of over-
all prediction probability distributions. Each prediction
probability has its place in the total probability mass; for ex-
ample, attribute value X having a probability of 0.4 could be
positioned in the range 0.5 to 0.9. A random number from 0
to 1 is generated, and if this number happens to fall between
0.5 and 0.9 then X is generated.
It was quickly very obvious, judging by the subjective

quality of generated harmonisations, that a modification
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Figure 6: Bar chart showing how cross-entropy varies with
h̄ for the separate prediction of Cont and Pitch in the alto,
tenor and bass given soprano using the augmented Pitch
domain and corpus ‘A+B’ with systems selected using cor-
pus ‘A’, comparing versions 1 and 2.

to the generation procedure would be required to produce
something coherent and amenable to comparison. The prob-
lem was that random sampling sometimes generated a chord
of very low probability, which was bad in itself because it
was likely to be inappropriate in its context; but also bad be-
cause it then formed part of the next chord’s context, which
had probably rarely or never been seen in the corpus. This
led to the generation of more low probability chords, re-
sulting in harmonisations of much higher cross-entropy than
those typically found in the corpus (quantitative evidence
supporting the subjective assessment). The solution was to
disallow the use of predictions below a chosen value, the
probability threshold, defined as a fraction of the highest
prediction probability in a given distribution. This definition
ensures that there is always at least one usable prediction
in the distribution, however high the fraction (probability
threshold parameter). Bearing in mind that an expert mu-
sician faced with the task of harmonising a melody would
consider only a limited number of the more likely options
for each chord position, the removal of low probability pre-
dictions was considered to be a reasonable solution to the
problem. Separate thresholds have been implemented for
Duration, Cont and Pitch, and these thresholds may
be different for different stages of generation. It is hoped
that as the models improve, the thresholds can be reduced.
The probability thresholds of models used for generat-

ing harmony are optimised such that the cross-entropy of
each subtask, averaged across twenty harmony generation
runs using the ten melodies from test dataset ‘A+B’, approx-
imately matches the corresponding prediction cross-entropy
obtained by ten-fold cross-validation of corpus ‘A+B’.
One of the more successful harmonisations of hymn tune

Das walt’ Gott Vater (Vaughan Williams 1933, hymn no.
36), automatically generated by the best version 1 model

with optimised probability threshold parameters, is shown
in Figure 7. It is far from perfect, with the second phrase
being particularly uncharacteristic of the corpus. There are
two parallel fifths in the second bar and another at the begin-
ning of the fourth bar. The bass line is not very smooth, due
to the many large ascending and descending leaps.
One of the more successful harmonisations of the same

hymn tune, automatically generated by the best version 2
model with optimised probability threshold parameters, is
shown in Figure 8. The first thing to notice is that the bass
line is more characteristic of the corpus than that of the ver-
sion 1 harmonisation. This could well be due to the fact that
this version employs specialist systems for the prediction of
bass given soprano. It is rather jumpy in the last phrase,
however, and in the final bar there is a parallel unison with
the tenor. The second chord of the second bar does not fit
in with its neighbouring chords, and there should be a root
position tonic chord on the third beat of the fourth bar. On
the positive side, there is a fine example of a passing note
at the beginning of the fifth bar; and the harmony at the end
of the third phrase, with the chromatic tenor movement, is
rather splendid.

Conclusion
The first set of version 2 viewpoint selection runs, for at-
tribute prediction together using the seen Pitch domain,
compare different combinations of two-stage prediction. By
far the best performance is obtained by predicting the bass
part first followed by the inner parts together, reflecting the
usual human approach to harmonisation. It is interesting to
note that this heuristic, almost universally followed during
harmonisation, therefore has an information theoretic expla-
nation for its success.
Having demonstrated the extent to which multiple view-

point systems have specialised in order to carry out these
two rather different prediction tasks, we use an even greater
number of specialist systems in a second set of runs. These
show that better models can be created by selecting separate
multiple viewpoint systems to predict individual musical at-
tributes, rather than a single system to predict them all.
In comparing version 1 with version 2, only Cont and

Pitch are taken into consideration, since the prediction of
Duration is not directly comparable. On this basis, ver-
sion 2 is better than version 1 when using corpus ‘A’, which
again tallies with human experience of harmonisation; but
when corpus ‘A+B’ is used, their performance is identical.
We can infer from this that version 1 creates more gen-
eral models, better able to scale up to larger corpora which
may deviate somewhat from the characteristics of the origi-
nal corpus. Conversely, version 2 is capable of constructing
models which are more specific to the corpus for which they
are selected.
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Figure 7: Relatively successful harmonisation of hymn tune Das walt’ Gott Vater (Vaughan Williams 1933, hymn no. 36)
automatically generated by the best version 1 model with optimised probability threshold parameters, using corpus ‘A+B’.
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